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ABSTRACT 
The main goal of this paper is to report recent progress on two example projects supported within the Ground 

Robotics Reliability Center (GRRC), a TARDEC supported research center headquartered at the University of 
Michigan.  In the first project, the concept of Velocity Occupancy Space (VOS), a new navigation algorithm that 
allows a robot to operate using only a range finding sensor in an unknown environment was developed.  This 
method helps a mobile robot to avoid stationary and moving obstacles while navigating towards a target. The 
second project highlighted is related to energy and power requirement of mobile robots.  Hazardous terrains pose 
challenges to the operation of mobile robots. To enable their safe and efficient operations, it is necessary to detect 
the terrain type and to modify operation and control strategies in real-time. A research project supported by GRRC 
has developed a closed-form wheel-soil model. Computational efficiency of this model is improved by avoiding 
traditional recursive solution of the model under binary search. Results from these two projects are expected to 
improve the safety and mobility of mobile robots. 

 
INTRODUCTION 

This paper reports recent progress on two selected projects 
at the Ground Robotics Reliability Center (GRRC), a 
TARDEC supported research center headquartered at the 
University of Michigan.  The main goal of GRRC is to 
develop design and analysis tools to promote reliable 
operations of mobile robots.  These two projects are selected 
from more than a dozen projects currently supported by the 
Center.    

Many of the military mobile robots currently in use were 
designed to be tele-operated by a soldier.  Future mobile 
robots are likely to become more autonomous.  A key 
enabling technique for autonomous operations is 
comprehensive environmental awareness, and in particular 
the existence and motions of nearby obstacles.  In addition, 
the robot needs to plan its motion to avoid colliding with the 
obstacles while moving toward the target as quickly as 
possible.  Sensing the environment, especially the existence 
of human objects can be done using different sensing 
systems.  In two recent autonomous robotic competitions: 
the Grand Challenge and the Urban Challenge, most leading 
teams selected to use laser range sensors rather than vision 
cameras as their main “obstacle detection” sensors.  In fact, 
the laser range sensors were used not only to detect 
obstacles, but also the terrains.  The basic idea of the GRRC 

safety project is to use information collected from the laser 
range sensors to avoid collision with moving obstacles.  
Velocity Occupancy Space (VOS) [1], a new navigation 
algorithm that allows a robot to operate using only a range 
finding sensor in an unknown environment was developed.  
This method can be deployed to avoid stationary and moving 
obstacles while navigating towards a goal. This method uses 
the uncertain obstacle representation in the occupancy space 
to estimate the location of each obstacle and approximate 
each obstacle’s velocity using data in a few steps in the past. 
The obstacle information is converted into velocity obstacle 
form and used to calculate the attractiveness of each 
candidate velocity. The attractive and repulsive factors were 
weighed and the optimal velocity is picked. Simulation 
results will be shown to demonstrate the performance of the 
developed algorithm. 

The second project to be highlighted is related to energy 
and power requirement of mobile robots.  Hazardous terrains 
pose a challenge to the operation of mobile robots, 
especially for military applications such as surveillance, 
battlefield casualty extraction, etc. To enable their safe and 
efficient operations, it is necessary to detect the terrain type 
and to modify operation and control strategies in real-time. 
A possible application of the developed concept is for robots 
used in search and rescue missions, e.g., the concept 
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proposed in [2].  These robots may need to traverse through 
a wide range of terrains and might even switch from tracked 
to wheeled operations for optimal mobility and energy 
efficiency.  Fast wheel-terrain interaction models suitable for 
real-time applications are thus important. In a research 
project supported by GRRC, a closed-form wheel-soil model 
was developed [3]. Computation efficiency of this model is 
improved by avoiding traditional recursive solution of the 
model under binary search. Online prediction and real-time 
control becomes possible by using the developed closed-
from wheel-soil interaction model and the entry angle 
estimator. 

 
VOS BASED OBSTACLE AVOIDANCE 

  Several stationary obstacle avoidance algorithms have 
been developed and successfully implemented, including 
those described in [4][5].  Path adaption algorithms, such as 
path-velocity decomposition [6] or gradient-based path re-
planning [7] are often integrated into global planners to 
allow for reactive behaviors.  

The method we developed, based on the velocity 
occupancy space (VOS) concept [1], falls in between the 
high level global planner and the lower-level obstacle 
avoidance system. The VOS method uses the certainty grid 
concept to avoid stationary obstacles using uncertain sensor 
data, as introduced by Moravec and Elfes [8], together with 
the velocity obstacle method for moving obstacle avoidance 
developed in [9]. Certainty grids allow a robot to navigate in 
a stationary, cluttered environment using data from a 
realistically uncertain range sensor (i.e. laser range finder, 
sonar). The certainty grid deals with the high error rate often 
found with lower cost range sensors by utilizing multiple 
sensor measurements.   

Conversely, the velocity obstacle concept developed by 
Fiorini and Shiller [9] and extended by Shiller, Large and 
Sekhavat [10] and Large, Laugier and Shiller [11] avoids 
collisions with moving obstacles using a first-order method 
of motion planning. This method uses information about the 
obstacles’ locations and velocities to compute “velocity 
obstacles,” which are a set of robot velocities that will lead 
to collision at some future point in time. However, while the 
velocity obstacle concept allows for the avoidance of 
moving obstacles, in its original form it requires complete 
knowledge of the obstacles’ dimensions, locations and 
velocities--information that is typically not available from 
range finding sensors. 

The concept of combining the occupancy grid 
representation of an uncertain environment with velocity 
obstacles was first explored by Bis, Peng and Ulsoy [12] and 
Fulgenzi et al. [13][14].  Fulgenzi et al. use Bayesian 
Occupancy Filter (BOF) and Probabilistic Velocity 
Obstacles (PVOs) for velocity selection.   

 

Formulation of Optimization Problem 
Assuming that the laser range finders have successfully 

identified the obstacles in the neighborhood, and calculated 
their velocities, then each point in the velocity space can be 
evaluated based on their potential to lead toward a collision 
and toward the target point.  The selection of the robot 
velocity is solved from an optimization problem, as 
explained below.  The value of each element in the velocity 
occupancy space is based on two sets of factors. The first set 
forms a repulsive weight, based on the possibility that this 
velocity might lead the robot to a collision. The second set is 
based on how quickly and directly a velocity leads the robot 
to its goal.  

The repulsive value, R , of each element is defined by the 
equation 

1( ) TTC
R R R AR Oc

WR W D A W E
TTC CD

⎡ ⎤⎛ ⎞= ⋅ ⋅ + ⋅⎜ ⎟⎢ ⎥⎝ ⎠⎣ ⎦
 (1) 

where the weights (W R,  WTTC, and WAR) are the “degrees of 
freedom” of the algorithm that can be calibrated or 
optimized.  W R is the overall repulsive weight; a measure of 
how important it is to avoid obstacles in comparison to 
reaching the target. DR is the repulsive direction term.  AR is 
the repulsive angular term.  The weighted angular term, WAR, 
allows a more or less conservative range of velocity angles 
that are assumed to lead to a collision to be defined based on 
the situation.  The time to collision, TTC, and the Cartesian 
distance, CD, terms characterize the collision risk between 
the robot and an obstacle. If a velocity does not meet the 
angle and direction requirements, then the TTC and CD are 
not calculated, as the overall repulsive weight, R, is already 
set to zero.  OcE is the occupancy value for the obstacle 
element with which each robot velocity will lead to a 
collision. 

The attractive value for each VOS element is found from  
[ ]VD A AA W VD VC W A= ⋅ + + ⋅   (2) 

where the weights  VDW and AW  are tuned based on the 
robot’s objectives. VD is the difference between the 
candidate velocity and the desired velocity that will lead 
toward the goal.  VC is the velocity change from the current 
velocity, used to penalize jerky motions.  AA  is the 
attractive angle computed based on the target location.  
Details of these terms can be found in [1]. 

The weights on the repulsive and attractive terms in 
Eqs.(1) and (2) are first tuned manually and then optimized 
numerically.  The basic process is as follows: 10 
representative collision avoidance cases were defined, in 
which there are one to four moving obstacles, all of them 
moving at a constant speed (and never pursue the robot 
maliciously).  These obstacles may have speeds that come in 
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the way between the robot and the target or even directly 
toward the robot.  Therefore, the robot might need to slow 
down or turn to avoid colliding with these obstacles.  These 
ten cases were used as training scenarios, based on which the 
weights of the attractive and repulsive terms are optimized.   

Four evaluation metrics were used to judge the quality of 
the path that the robot followed given each set of weights. 
During each time step the position of the robot, the robot’s 
velocity and the relative position of each obstacle to the 
robot was recorded. The distance traveled, change in 
velocity and the square of the inverse of the closest 
obstacle’s proximity to the robot were individually summed 
for every time step and used as the first three evaluation 
metrics: distance traveled, acceleration and obstacle 
proximity. In addition, the number of time steps required for 
the robot to reach the goal and two binary values that 
indicated if a collision occurred during the scenario and 
whether the robot successfully reached the goal were also 
recorded. Optimization was performed using MATLAB’s 
fgoalattain() function to optimize the performance of the 
algorithm over the ten training maneuvers.  This function 
uses sequential quadratic programming to reduce a set of 
nonlinear functions to below a given goal level. 

 
Optimization Results 
The hand tuned weights and the optimized weights are 

compared in Table 1. 
 
Table 1 Weights of the VOS algorithm both hand-tuned and 

optimized 

  Hand-tuned  
Weights 

Optimized  
Weights 

Repulsive  
Weights 

WR 1.0 0.4 

WTTC 3.5 3.5 

 WAR  1.0 1.0 
Attractive  
Weights 

WVD 2.7 2.2 
WA 0.3 1.2 

 

 
Figure 1: Normalized Evaluation Metrics: Hand Tuned vs. 
Optimized Weights for 10 Design Scenarios (one sigma error bars) 

 
      Performance of the algorithm for the ten training 
scenarios is shown in Figure 1.  The optimized weights 
result in improved performance in every measure.  This 
result is encouraging but not adequate: since the algorithm 
was trained using these ten cases it is not a surprise that it 
performs better for these ten cases.     
     The performance of the algorithm is then evaluated using 
one thousand randomly generated scenarios.  Due to the 
randomness, some of the scenarios might be trivial while 
some others are impossible to handle.  Nevertheless, these 
1,000 cases cover a wide range of scenarios and represent a 
comprehensive evaluation of the performance.  The 
optimized algorithm still outperforms the hand-tuned 
weights consistently, as shown in Figure 2.  There were nine 
failures (0.9%) for the hand-tuned weights and four failures 
(0.4%) for the optimized weights. The scenarios in which 
failures did occur were quite challenging. For example, one 
of the failures using the optimized weights occurred when a 
couple of obstacles converged almost immediately on the 
robot. An omniscient agent would have been able to find a 
successful path; however the algorithm had little time to 
collect information regarding the obstacles and there were a 
very limited number of velocity choices that would have 
allowed the robot to successfully avoid all of the obstacles.   

 
Figure 2: Comparison of Normalized Evaluation Metrics between 
Hand Tuned and Optimized Weights for 1000 Scenarios (one sigma 
error bars) 

 
   Even though the proposed algorithm assumes that the 
obstacles move at constant speed, we have also tested its 
performance with obstacles that have varying speeds.  One 
example is shown in Figure 3.  It can be seen that the robot 
finds a way through these obstacles and reaches the goal 
successfully. 
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Figure 3: Simulation results with four moving and two stationary 
obstacles—some with varying speeds  
 

The VOS-based algorithm has demonstrated potential to 
handle multiple moving obstacles.  Currently we are 
extending the concept presented above to cover the cases 
when a subset of the obstacles is of higher priority than 
others (e.g., human pedestrians vs. lifeless objects).  It is also 
possible to use a different sensing system (e.g., far-Infrared) 
for faster human subject detection.  Currently we are 
implementing the developed algorithm on a mobile robot.   

 
WHEEL-TERRAIN MODEL FOR OFFROAD MOBILE 
ROBOTS 

Military applications often require the robots to travel on 
unstructured, rugged terrain to conduct tasks such as 
surveillance or transporting materials. The mobility and 
trafficability of the robots in these off-road environments are 
crucial to the success of the mission, with a common failure 
mode being the robot trapped in soft soil. Another key factor 
is power consumption, which has become particularly 
relevant for robots with limited energy source. To achieve a 
successful mission and improve the mobility and power 
performance, efficient modeling of locomotion load is 
required. While existing military robots are mostly track-
based, we believe this is because of tradition, rather than the 
necessary choice.  Traditional military vehicles (e.g., tanks 
and armored vehicles) are very heavy and tracks are clearly 
beneficial.  However, when we are designing for mobile 
robots around 20-200 pounds, tracked designs can be less 
efficient than their wheeled counterpart.  The fact that 
NASA Mars Exploration Rover was designed to use six 
wheels shows that wheeled robots are viable for small 
robots. In the first phase of our project we focused on the 
study of wheel-terrain interactions.  The track-terrain model 
is currently under development.       

In the mid-20th-century, Bekker studied the principles of 
off-road vehicle-terrain interactions [15][16] and laid the 
foundation of terramechanics. The field was later extended 
by Wong [17][18]. In [19], Wong proposed an analytical 
model to predict the performance of a driven rigid wheel on 
soft soil in a straight-line. Inspired by Wong’s work, Tran 
proposed a two-dimensional dynamic model for a skid-
steering wheeled UGV on a flat surface [20][21].  

The performance of lugged wheel (wheel with grousers) 
was rarely studied in the literature despite of the fact most 
wheels designed for off-road applications have grousers. 
One exception is the wheel-soil model proposed in [22][23]. 
Unlike Wong's wheel model, where the normal and shear 
forces are distributed along a cylindrical surface determined 
by the wheel radius, the normal pressure and the shear stress 
in this model are assumed to be along surfaces with radii 
equal to the wheel radius and the shear radius.  

The model we developed, called the ‘wheel terrain 
interaction model’ (WTIM), incorporates many key concepts 
from previous studies of terramechanics, including the effect 
of steering and grousers. Our model was developed for the 
purpose of both dynamic simulations of mobile robots and 
for the design and control synthesis of the energy/power 
system. A common problem of the wheel-terrain interaction 
models mentioned above is that closed-form expressions of 
the integrated stress formulas were not available, due to the 
complexity of classical terramechanics equations. This 
makes these models time-consuming to solve. On the other 
hand, online prediction of robot performance is desired to 
adapt to variable mission conditions, to maximize wheel 
traction, and/or minimize power consumption.  A fast wheel-
terrain interaction model is an important enabler toward such 
online applications. 

An accurate, closed-form wheel-terrain interaction model 
capable of real-time implementation was developed in this 
GRRC supported project by using quadratic approximation 
of stress distributions along the wheel-soil interface. The 
average effect of wheel profiles, e.g., lugs and grousers, will 
be modeled, with inspiration from classical terramechanics. 
In addition, the explicit-form solution of the bulldozing 
resistance contributed by the wheel's side surface in steering 
maneuvers was developed, based on the stress distribution 
equations proposed by Bekker [15] and Hegedus [24]. 

An equally important part of the locomotion model is to 
integrate the wheel-soil interaction model with a vehicle 
dynamics model, to calculate motion of the vehicle's body 
according to wheel contact forces. This is usually done by a 
multi-body system (MBS) based approach, in which the 
robot is modeled as an articulated multi-rigid-body system 
while the wheel contact forces (including the normal forces 
and tangential forces) are simultaneously identified by the 
wheel-soil interaction model. This MBS-based approach is 
flexible and straight-forward. However, it could lead to 
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numerical stability problems because the normal pressure 
and wheel sinkage relation is essentially modeled as a non-
linear spring. The stability problems remain even after a 
damping term is introduced. Reduction of oscillations 
usually requires further tuning of the spring and damping 
coefficients. 

 
Model Architecture 
Figure 4 shows the integrated wheel-soil and vehicle 

dynamics model. Instead of simultaneously determining the 
normal and tangential wheel forces, the normal force of each 
wheel is identified by geometrical analysis and/or classical 
vehicle dynamics equations. The normal force is then used 
to determine the longitudinal force, lateral force and 
moments acting on the wheel. To calculate these 
forces/torques, we need to determine the entry angle based 
on the normal wheel load. This is usually solved by iterative 
methods such as interpolation or recursive binary search, 
both can be very time-consuming. A non-iterative method to 
estimate the entry angle is presented in this paper. Online 
prediction of robot performance and real-time vehicle 
control become possible by coupling the proposed wheel-
soil interaction model and the entry angle estimator. It 
should be pointed out that this approach could also take 
advantage of MBS software such as SimMechanics and 
ADAMS for vehicle dynamics modeling and system 
integration. 

 

Vehicle dynamics 
model 

(MBS/equations)

Find the 
entry angle

Wheel-soil 
interaction 

model

θfiIdentify 
the normal 
wheel load

Wi

Inputs Fi , Mi

kinetic info.

Real-time implementation can be achieved 
by the Terramechanics-Based Formula (TBF)

vehicle data, 
soil data, etc.

MBS based approach

s, β s, β

inputs

 
Figure 4. Integrate wheel-soil interaction and vehicle dynamics 

model.  
 
 

 
Figure 5. Wheel-soil contact geometry (cylindrical surface). 

Figure 5 shows a driven rigid wheel traveling over a flat 
soil surface. The slip ratio and slip angle of the tires are 
calculated first, which are then used to calculate the overall 
shear deformation, the latter is then used to compute the 
shear stress.  Together with the normal stress, the tire forces 
and moments can then be calculated.   
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Notice that Eqs. (3) and (4) can be solved analytically if 
the stress distribution equations are polynomials of θ. In fact, 
a linear approximation method was used to develop a closed-
form wheel-terrain interaction model for straight-line motion 
scenarios [25].  However, the stresses are generally 
nonlinear, and the linear approximation sometimes leads to 
large errors. This is especially true if the soil's sinkage 
exponent n is small (e.g., clayey soil). We use a quadratic 
approximation method in this paper because the model 
accuracy is improved significantly with minimal increase in 
computational load. 
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Simulations were conducted to compare the performance 
of the quadratic approximation with respect to the original 
nonlinear model (solved iteratively) over a broad parameter 
space. Three typical soils with different sinkage exponents 
are chosen and their physical properties are given in Table 2 
[25]. Both the smooth wheel and the lugged wheel are 
studied and their geometry parameters are given in Table 3. 
The other parameters required for the simulations are given 
in Table 4. 

Table 2. Physical parameters of the selected soils. 
Parameter 

(unit) Description Dry  
sand 

Sandy 
loam 

Clayey 
soil 

n (-) Sinkage exponent 1.1 0.7 0.5 
c (kPa) Cohesion 1.0 1.7 4.14 

φ (°) Internal  
friction angle 30 29 13 

kc (kN/mn+1) Cohesive modulus 0.9 5.3 13.2 
kφ (kN/mn+2) Frictional modulus 1523 1515 692.2 

K (m) Shear modulus 0.025 0.025 0.01 

Table 3. Parameters of the smooth wheel S and lugged wheel L. 
Parameter 

(unit) 
b 

(m) 
r  

(m) 
lg 

(m) 
rs 

(m) 
μ  
(-) 

Smooth 
wheel S 0.075 0.080 0.0 0.080 0.0 

Lugged 
wheel L 0.075 0.080 0.005 0.085 0.1 

Table 4. Other parameters used for model comparison. 
Parameter 

(unit) s (-) β (°) θf (°) θm 
(°) 

θr 
(°) 

Value [0.1, 
0.8] 

[0, 
36] 

[20, 
50] θf /2 0 

 

 
  Figure 6. Approximation errors at various slip conditions (smooth 
wheel on sandy loam). 

Figure 6 shows the errors of the linear and quadratic 
approximation methods against the original nonlinear model 
for various slip ratios and slip angles under the same entry 
angle θf (θf = 30°). The mean values and the standard 
deviations of these errors can then be plotted relative to the 
entry angle for the smooth wheel and lugged wheel over 
these soils, as shown in Figure 7. The mean values of the 
approximation errors are given in the subplots. The notations 
'S1' and 'S2' represent the linear and quadratic 
approximations of the stresses for the smooth wheel S, 
respectively. The notations 'L1' and 'L2' represent those of 
the lugged wheel L. We see that the modeling error is 
reduced by an order of magnitude by using the quadratic 
approximation method. 
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  Figure 7. Error statistics of the quadratic and linear approximation 
methods. 

 
The wheel-soil interaction model was compiled as C-MEX 

files to interface with Matlab/Simulink. Overall computation 
times of these three functions are 277 μs on a 1.6 GHz 
laptop computer. This demonstrates the feasibility for online 
applications. 
 

Simulation and Experimental Validations 
The simulation procedure is summarized as follows: 

1. Initialize the vehicle dynamics model and the wheel-
terrain interaction model. Set the robot's initial 
acceleration to zero. 

2. Determine the normal load of each wheel.  
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3. Update the steering angles and the rotational angular 
velocities for each wheel according to the data measured 
in experiments. Calculate the slip ratios and slip angles. 

4. Derive other forces/torques for each wheel by using 
TBF. 

5. Obtain the robot's positions, orientation (yaw angle), 
and velocities. Return to step 2. 

Instead of using the above procedure, one can also use 
MBS software such as Open Dynamics Engine (ODE) or 
ADAMS for vehicle dynamic modeling and system 
integration. The SimMechanics Toolbox in Matlab/Simulink 
is used in this paper. As shown in    Figure , the robot (the 
steering angle of each wheel is fixed in this example) is 
modeled as a rigid body with three degrees of freedom 
(DOFs). The wheel-soil interaction for each wheel is 
handled by a TBF block. 

Wheel-Soil Interaction Modeled by Terramechanics-Based Formula (TBF)
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   Figure 8. Rover testbed modeled in Simulink with wheel-soil 
interactions handled by TBF.  

In addition to simulations, we also conducted experiments 
on a 4-wheel rover designed and assembled at GRRC (see 
Figure 9).  Figure 10 shows the comparison between the 
simulation and experimental results of two steering 
experiments.  The simulation results are very close to the 
experimental results, with the mean error approximately at 
3.5% of the true (experimental) values.  This is a significant 
reduction from a “convention model” which is the standard 
“bicycle model” commonly used in the automotive field. 

In addition to the standard on-board sensors, a state-of-the-
art motion capture system (Vicon MX series, accuracy: sub-
mm) was used to record the robot's trajectory at a rate of 60 
Hz. Thirteen reflective markers (5 markers on the rover 
body, 2 markers on each of the suspension arms, and 1 
marker on each of the steering blocks) were installed on the 
rover testbed for motion tracking.   When the high accuracy 
tracking system is used, the RMS position error and the final 
state position error are 1.18 cm and 0.44 cm, respectively 

when the robot travels 1m. Those of the orientation error are 
0.27 deg and 0.23 deg, respectively. The proposed model 
also exhibits good accuracy in predicting translational 
speeds of the vehicle center and the rover's wheels. 

 
 Figure 9. The test robot with motion tracking system. 
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   Figure 10. Experimental and simulation results of rover steering 
trajectories. 
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CONCLUSIONS 
The Ground Robotics Reliability Center focuses on 

innovative research to improve the reliability of mobile 
robots.  The two example projects presented in this paper 
aim to achieve reliable operations through improved 
environmental awareness, and improved efficiency.  The 
final goal is better safety and mobility of ground robots. The 
VOS based navigation algorithm achieves excellent obstacle 
avoidance performance.  Its performance has been validated 
using 1,000 randomly created scenarios.  This algorithm is 
now being implemented on a super-droid mobile robot.   

The terramechanics model developed combines key 
elements presented in the literature, including the effect of 
steering and grousers.  We are working on off-line processes 
to improve the computation efficiency, as well as applying it 
to the sizing of power component of a conceptual robot.  
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